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Deep learning-based algorithms are the “go to” method for automatic visual recognition 
systems.
But how do these methods perform when they are given input that have been processed 
by algorithms from computational photography which are meant to address artifacts such 
as blur, noise, and mis-focus?

289 videos have 1,217,496 frames of which 159, 464 frames have object-level annotations, 
representing 228 ImageNet classes, combined into 37 super-classes encompassing visually 
similar ImageNet categories and two additional classes for Pedestrian and Resolution chart 
images
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We are organizing a prize challenge at CVPR 2018, Salt Lake
City, Utah in association with ODNI, IARPA. $75,000 plus travel
money can be won!
Please visit our website: http://www.ug2challenge.org/

In order to answer this question, we: 
• Introduce a new video benchmark dataset, UG2 representing both ideal conditions and 

common aerial image artifacts.
• Evaluate the influence of image aberrations and other problematic conditions on object 

recognition models - VGG16, VGG19, InceptionV3 and ResNet50.
• Measure impact and suitability of basic and state-of-the-art image and video processing 

algorithms used in conjunction with common object recognition models. 

Shared class distribution of at least 2 UG2
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(Top) In principle, image restoration and 
enhancement techniques should improve 
visual recognition performance by creating 
higher quality inputs for recognition models. 
This is the case when a Super Resolution 
Convolutional Neural Network1 is applied to 
the image in this panel. 

(Bottom) In practice, we often see the 
opposite effect --- especially when new 
artifacts are unintentionally introduced, as in 
this application of Deep Deblurring3.

UG2 consists of three collections:
• 50 Creative Commons tagged videos taken by fixed-wing unmanned aerial vehicles 

(UAV) obtained from YouTube
• 61 videos recorded by pilots of fixed wing gliders.
• 178 controlled videos captured on the ground.

UG2 can be found at: https://goo.gl/AjA6En
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